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“There are three kinds of persons: those who know how to count and those who don’t.” If the joke works, it 

is because very few of us get to have a close encounter with the third kind, those who know how to count to 
infinity. One of them, the German mathematician Georg Cantor (1845;1918) was the first to explain what it really 
means to count to infinity and also that there are many ways to do so.  

 
I. The origins of infinity. 
 
 Before Cantor mathematicians were barely smarter than a 6th grader as regards infinity. The thing is that 

every child gets a fairly good appreciation of at least one aspect of infinity at a very young age. When he learns 
how to count, a child understands quickly that there is no limit to the sequence of natural numbers (positive 
integers). He knows that after 999,999 comes 1,000,000 as much as he knows that 1000 comes after 999, he just 
needs to learn how to name it. It is more a problem of vocabulary because some language is needed to speak the 
numbers. 

 I have been teaching to 6th graders for more than ten years and I know they have no problem imagining 
a straight line going to infinity, a very abstract concept. And when they are asked to place equally spaced dots on 
a straight line to represent numbers, they get it easily because they know that on an infinite line there will always 
be dots available for ever increasing numbers. One infinity for another. However, it takes a much greater effort for 
6th graders to try and consider the infinite number of dots between any two dots forming a line segment. This 
infinity within seems harder to grasp than the infinity without. It seems that because the line segment is bounded 
while the line is limitless, some kids think it does not fit in, they believe there is not enough space. The problem 
with the segment line is that we can draw it completely and this makes us believe it is concrete when it actually 
has a purely abstract definition. In order to see it better, one can simply consider the amount of decimal numbers 
between 2 and 3. As one can always write a decimal number between any two decimal numbers, it is clearly 
infinite. 

 
 This fundamental distinction between the infinity of dots on a line (infinity at large) and the infinity of 

dots within a line segment, was already noticed by Aristotle. After some dubious considerations, Aristotle 
concluded that he could only accept one kind of infinity, the potential infinity of things limitless, as the straight 
line. More precisely, it looks as if Aristotle would accept that something goes to infinity but not that it would be 
made of infinity. The problem for Aristotle was the coexistence of an infinite number of things, what he called an 
actual infinite.  

 
“Our account does not rob the mathematicians of their science, by disproving the actual existence of the 

infinite in the direction of increase, in the sense of the untraversable. In point of fact they do not need the infinite 
and do not use it. They postulate only that the finite straight line may be produced as far as they wish.”1 

To make a long story short, the consequence of this was that it more or less forbid anyone to speak about 
or to probe infinity for about 2000 years. However it also allowed mathematicians to work with infinity without 
questioning the real nature of it. To illustrate this, let’s see how easy it is to prove that the number 0.999... (with 
an infinite number of 9s) equals to 1. 

 

 (1) X=0.999...  (2) 10X=9.999... (3) 9X=9 subtracting (1) from (2)  (4) X=1 
   

                                                 
1
 See Aristotle, Physics, Book III, 8 
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Line (3) assumes that there is the same infinite number of 9s after the dot in both numbers, thus explaining 
their disappearance. Using the same method, every number with a infinite but repeating sequence of decimals 

can be proved to be equal to a rational number (i.e. a fraction). This way, 
99

537
42424242.5  . This gave 

mathematicians the impression that infinity could be tamed.  
 
Another example of mathematicians working with infinity is found in the development of Calculus at the 

end of the 17th century. Leibniz and Newton separately created their methods of differential and integral calculus 
by using infinitely small quantities but they never clearly defined them. 

 
II. Problems with infinity. 
 
One important problem in many fields of mathematics is that many rules go awry when one try to extend 

them from the finite to the infinite. To illustrate this, let’s consider the first hundred natural numbers from 1 to 
100. Half of them are even numbers. If one counts further, say to 10,000 then 5,000 of them are even. This easily 
brings the following statement : 

 
 (1) There are twice as many natural numbers as there are even numbers. 
 
Since there is no limit to the sequence of numbers, these two additional statements are also true: 
 
 (2)  The number of natural numbers is infinite. 
 (3)  The number of even numbers is infinite. 
 
Then, when one considers all the numbers, there is a problem: either statement (1) is not true anymore 

either one infinite is twice as big as the other. Both solutions go against common sense. 
 

Another slightly different example is the following: 
 
 (1‘) The numbers of dots belonging to the line segment [AB] is infinite. 
 (2‘) The numbers of dots belonging to the straight line (AB) is infinite. 
 (3‘) The line segment [AB] is part of the straight line (AB). 
 
Again because of (3‘) one may think that there are more dots on the straight line than on the segment but 

then that would mean that the infinite number of (2‘) is larger than the infinite number of (1‘).  
 
The “slight” difference between the two examples mentioned above is actually of great importance in our 

story. This is the difference between the discrete and the continuous. To explain this, it is enough again to 
consider the natural numbers on a dotted line. When placed on a straight line, natural numbers clearly leave holes 
as there are no integers between 1 and 2 or between any two consecutive integers. This is the discrete. On the 
other hand, the infinite number of dots completely fills up the straight line. This is the continuous. At the start of 
the 19th century, two related questions remained unanswered. 

 
 1. What type of numbers can fill up the straight line, leaving no holes? 
 2. Can there be a difference between two infinites? 
 
Question 1 suggests that other types of numbers can be placed on our straight line, e.g. rational numbers. 

Rational numbers are defined as the ratio of two integers. All of them can be placed on the “number line”. But this 
doesn’t take us very far. More interesting is the fact that -contrary to natural numbers- there is always a rational 



  

number between any two rational numbers. If 
b

a
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d
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 are rational numbers then 
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number and is obviously between 
b
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 and 
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c
 because it represents the middle point. It follows easily that there is 

an infinite number of rationals between two numbers. Is that enough to fill up the number line? The answer is no. 
In fact, as was discovered by Pythagoras‘ clique, all numbers are not rational. The number measuring the diagonal 
of a square whose side is 1 can easily be “placed” on the number line (between 1 and 2) but it is not rational. This 

number 2 is now called an irrational number. Both rational and irrational numbers make up the group of real 
numbers2.  

 
III. What is a real number ? 
 
Do real numbers leave holes on the number line? Before an answer could be given to this question, it was 

necessary to give a clear and precise definition of real numbers. In a concise article published in 1872 On 
Continuity and Irrational Numbers, Richard Dedekind (1831;1916) did exactly that. The true genius of Dedekind 
resides not only in the way he understood the necessity of a rigorous definition of real numbers but also in the 
method he used to define something that could seem obvious to others, especially to modern mathematicians 
who are used to work with the number line. Dedekind considered each dot on the number line as the intersection 
with another line falling on it. If this intersection represents a rational number Q then there is a clear division of 
the number line in two groups: numbers greater than Q and numbers smaller than Q. The main difficulty occurs 
when the intersection (the cut in Dedekind’s own terms) is not a rational number. Because he wanted to define 
irrational numbers, he could not claim the same argument. However by considering the numbers whose square is 
smaller than 2 and the others, he could clearly define two subsets of numbers and the cut would serve as a 

definition of the number 2 . The details are more complicated and Dedekind gave a precise mathematical 
construction but for our concern, only the result matters. 

 
“Whenever, then, we have to do with a cut produced by no rational number, we create a new, an irrational 

number, which we regard as completely defined by this cut. […] From now on, therefore, to every definite cut 
there corresponds a definite rational or irrational number. 

—Richard Dedekind, Continuity and Irrational Numbers, Section IV 
 
 
 
 
 
 
 
 
 
 
 

Born in 
Braunschweig, Germany in 1831, Dedekind entered the University of Gottingen in 1850 where he had the honor 
of being one of Gauss’ last students. A contemporary of other great German mathematicians (such as Riemann or 
Dirichlet) his results on abstract algebra and number theory remain crucial today. In the early 1870’s Dedekind 
also met Georg Cantor, the man at the center of our story, and became one of his early admirers and defenders. 

 

                                                 
2
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IV. Cantor’s first works. 
 
In the late 1860’s, Cantor had already published several papers on number theory when he turned his 

interest on analysis. His work on trigonometric series (infinite sums of trigonometric functions, a subject beyond 
the scope of this article) lead him to a definition of irrational numbers and also forced him to consider infinite 
sets. Through this, he came to the invention of Set theory, a theory that would change the realm of mathematics 
forever. Put simply, set theory says everything consists of sets of objects and relations between these objects. For 
example, the number of girls in a class is a set as is the number of students wearing glasses. Today we are 
accustomed to speak about functions as a relation between numbers from one set (an interval of real numbers) 

with another. The function 2: xxf   takes any number and returns its square, thus creating a relation 
between real numbers and positive real numbers. But speaking about intervals of real numbers required a 
definition of the latter, which Cantor also gave in a paper published in 1883. Furthermore, to explain his findings, 
Cantor devised a method to “count“ a infinite number of elements. 

 
First, Cantor defined the cardinal of a set as the number of elements contained in the set. For example, if 

one considers sets consisting of days, then the cardinal of a week is seven. This process of enumeration is quite 
obvious when it deals with a finite number of elements but, as we saw, can get more difficult when one starts 

counting elements in an infinite set. The cardinal of the set of positive integers is  as is the cardinal of the set of 
real numbers. Does it mean that Card (N) = Card (R)? Not necessarily so. 

 
To explain this, Cantor needed to find a method to compare the cardinals of two different sets. This method 

is now called a one to one correspondence. For example, the association Red Monday, Orange Tuesday, Yellow 
Wednesday, Green Thursday, Blue Friday, Indigo Saturday and Violet Sunday creates a relation between the days 
of the week and the colors of a rainbow. Each day is associated to a unique color and the same color is not 
associated to two different days. This is a one to one correspondence. Once again this example with finite sets 
doesn’t help a lot because we already knew there were seven days and seven colors. This is also connected to 
Dirichlet’s drawer principle: if there were less colors than days, then two different days would necessarily have the 
same color. This method can be used to compare numbers without counting. By pairing elements of each set, one 
can easily see which set has the greater cardinal. This is actually the method Cantor used to see which sets had 
the same cardinal as N, by trying to pair them with the sequence of positive integers. 

 
A more interesting example is the function mentioned above which connects each real number with its 

square. Because two opposite numbers share the same square 42)2( 22  , the function is not a one to one 

correspondence between the set of real numbers and the set of positive real numbers. This doesn’t mean these 
two sets don’t have the same cardinal as there might be another function realizing the correspondence. This also 

doesn’t mean the square function cannot realize a one to one correspondence, it does so between [0;2] and 
[0;2]. Cantor actually proved that every interval of R has the same cardinal as R. 

 
With this invention of his, Cantor easily showed that the first paradox we encountered about even numbers 

is no more. The “doubling” function clearly realizes a one to one correspondence between all even integers and all 

positive integers : 12, 24, 36, 48, 510 etc… Following cantor’s definition, this proves that the cardinal 
of the set of even numbers is equal to card(N). 

 
Cantor also used geometrical correspondences to prove equality of cardinals. This is how he famously 

proved that there are as many dots on a square than there are on one side of the square. But to understand the 
method, we shall reflect on a simpler example :  

 
Let’s consider two concentric circles C1 and C2 (meaning they have the same center O) with respective 

radiuses of 1 and 10. Both circles are sets of an infinite number of dots and the length of C2 is 10 times bigger than 
the length of C1. Do both sets have the same cardinal ? The answer is yes and this is easily shown. Take any dot A1 
on the smaller circle C1 and draw a half line from O and through A. It will intersect C2 in one dot A2. Of course, one 



  

gets the same result if one starts with a dot on the large circle. This way, each dot on the smaller circle can be 
associated with one and only one dot on the larger circle, thus creating a one to one correspondence. There are 
“as many” dots on both circles. 

 
V. Cantor and the transfinite numbers. 
 
Cantor answered our second question in a paper published in 1874 ("On a Property of the Collection of All 

Real Algebraic Numbers"). First he defined the first transfinite cardinal number as the cardinal of the natural 
numbers. He named it   (from aleph, the first letter of the Hebrew alphabet). All sets whose cardinal is    are 
called denumerable (or countable infinite) and it means there exists a one to one correspondence with the natural 
numbers. Examples of such sets include : the set of prime numbers, the set of even natural numbers (with the 
bijection already presented) but also, surprisingly, the set of all rational numbers. For the latter, Cantor found a 
clever way to order all fractions proving that they could be “enumerated”. 

 
The next step for Cantor was to prove that the set of real numbers is not denumerable. It was already 

known at the time that real numbers could be divided into two subsets : the set of algebraic numbers and the set 
of transcendental numbers. (Footnote linking to article “Une histoire des equations”.) 

 
First Cantor proved that “The collection of real algebraic numbers can be written as an infinite sequence in 

which each number appears only once.” which is to say that there exists a one to one correspondence between 
algebraic numbers and positive integers. In other words the set of algebraic numbers is countable.  

 
Cantor’s second theorem is the following : ”Given any sequence of real numbers x1, x2, x3, … and any interval 

[a, b], one can determine numbers in [a, b] that are not contained in the given sequence.”   
 
And here is Cantor’s conclusion : 
 
“The reason why collections of real numbers forming a so-called continuum (such as, all real numbers which 

are ≥ 0 and ≤ 1) cannot correspond one-to-one with the collection (ν) [the collection of all positive integers]; thus I 
have found the clear difference between a so-called continuum and a collection like the totality of real algebraic 
numbers.” 

 
VI. The diagonal method. 
 
Some years later, in 1891, Cantor gave another proof of the uncountability of real numbers using the 

famous diagonal method. To understand how this method works, let’s consider infinite sequences of 0s and 1s as 
for example: 0 1 0 1 0 1 0 1… etc. 

  
We know define the set S which consists of an infinite number of such sequences which we shall name s1, 

s2, s3, ... The set S is obviously countable because there is a one to one correspondence between the elements s1, 
s2, s3, ... and the positive integers. 

  
Now we write these elements as follows.  
 
 s1 = (0, 0, 0, 0, 0, 0, 0, ...) 
 s2 = (1, 1, 1, 1, 1, 1, 1, ...) 
 s3 = (0, 1, 0, 1, 0, 1, 0, ...) 
 s4 = (1, 0, 1, 0, 1, 0, 1, ...) 
 s5 = (1, 1, 0, 1, 0, 1, 1, ...) 
 s6 = (0, 0, 1, 1, 0, 1, 1, ...) 
 s7 = (1, 0, 0, 0, 1, 0, 0, ...) 
 

http://en.wikipedia.org/wiki/Interval_%28mathematics%29


  

We then create a new sequence s0  by taking the diagonal sequence and switching 0s and 1s. We get the 
sequence s0 = (1, 0, 1, 1, 1, 0, 1, ...). Because of its construction, the sequence s0  has at least one different digit 
with each of the sequences of S (the 1st digit in s1, the 2nd in s2 etc… the nth in sn). Consequently, s0 cannot belong to 
S. It follows that the set T of all infinite sequences of 0s and 1s has a cardinal greater than the cardinal of S, which 

is . 
 
Cantor exhibited a one to one correspondence between the set of real numbers and T, a proof that the set 

of real numbers is not countable. 
 
VII. Cantor’s theorem and the continuum hypothesis. 
 
This is in the same paper that Cantor proved what is now referred to as Cantor’s theorem. 
 
 “For any set A, the set of all subsets of A has a strictly greater cardinality than A itself.” 
 
The set of all subsets of A is called the power set of A or P(A) and its cardinal is 2n where n is the cardinal of 

A. Again, this statement can be easily verified for finite sets. Let’s A be the set {a,b,c}. Then the subsets of A are 
{a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} (which is A itself) and { }, the empty set. We can easily check than card(A) = 3, 
card(P(A))= 8 and 23=8. 

  
As for infinite sets, Cantor proved that the power set of a countable infinite set is uncountable infinite. As 

an example, the power set of the set of natural numbers (the set of all subsets of natural numbers) has the same 
cardinal as the set of real numbers. 

 

It follows that card(R)=2 . 
 
A simple and last question remains to be asked: 
 
Is there a set whose cardinality is strictly between that of the integers and that of the real numbers ? 
 
This problem is now called the continuum hypothesis and it was considered so important that David Hilbert 

(1862;1943), one of the greatest german mathematicians of the time, made it the first of his list of 23 problems to 
be solved for the century. (Footnote linking to Marie’s article on Godel.) 

 
Cantor spent many years vainly trying to prove the hypothesis which he believed to be true. According to 

many authors, this may be one of the reasons for his repeated depressions after 1884.  
Sadly, and following two results by mathematicians Kurt Godel (in 1940) and Paul Cohen (in 1963), 

mathematicians know now that the continuum hypothesis can neither be proved nor disproved within the usual 
axioms of set theory. It is an undecidable proposition. (Footnote linking to Marie’s article on Godel.) 

 
Cantor’s creations were not welcomed by everyone. Leopold Kronecker (1823;1891) another german and 

later the french polymath Henri Poincaré (1854;1912) were firmly opposed to tranfinite numbers and participated 
in the intuinionist movement which was a reaction againts Hilbert’s formalism. However, whatever one may think 
about Cantor’s achievements, one cannot deny his influence on the mathematics of the 20th century. 

 
SOURCES :  
 
Everything and more… by David Foster Wallace. 
http://descmath.com/diag/ancients.html 
 
Wikipedia  

http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Cardinality
http://descmath.com/diag/ancients.html


  

 
http://en.wikipedia.org/wiki/Actual_infinity 
http://en.wikipedia.org/wiki/Georg_Cantor 
http://en.wikipedia.org/wiki/Richard_Dedekind 
http://en.wikipedia.org/wiki/Cantor%27s_first_uncountability_proof 
http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Actual_infinity
http://en.wikipedia.org/wiki/Georg_Cantor
http://en.wikipedia.org/wiki/Richard_Dedekind
http://en.wikipedia.org/wiki/Cantor%27s_first_uncountability_proof
http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

